Abstract
Diacylglycerol kinases are intracellular enzymes that control the balance between the secondary messengers diacylglycerol and phosphatidic acid. DGKα and DGKζ are the prominent isoforms that restrain the intensity of T cell receptor signalling by metabolizing PLCγ generated diacylglycerol. Thus, their activity must be tightly controlled to grant cellular homeostasis and refine immune responses. DGKα is specifically inhibited by strong T cell activating signals to allow for full diacylglycerol signalling which mediates T cell response. In X-linked lymphoproliferative disease 1, deficiency of the adaptor protein SAP results in altered T cell receptor signalling, due in part to persistent DGKα activity. This activity constrains diacylglycerol levels, attenuating downstream pathways such as PKCθ and Ras/MAPK and decreasing T cell restimulation induced cell death. This is a form of apoptosis triggered by prolonged T cell activation that is indeed defective in CD8+ cells of X-linked lymphoproliferative disease type 1 patients. Accordingly, inhibition or downregulation of DGKα activity restores in vitro a correct diacylglycerol dependent signal transduction, cytokines production and restimulation induced apoptosis. In animal disease models, DGKα inhibitors limit CD8+ expansion and immune-mediated tissue damage, suggesting the possibility of using inhibitors of diacylglycerol kinase as a new therapeutic approach.
Original language | English |
---|---|
Article number | 5816 |
Journal | International Journal of Molecular Sciences |
Volume | 22 |
Issue number | 11 |
DOIs | |
Publication status | Published - 1 Jun 2021 |
Keywords
- Activation-induced cell death
- ERK
- PKC
- SH2D1A
- SHP-2
- SLAM
- Signal transduction