Could machine learning improve the prediction of pelvic nodal status of prostate cancer patients? Preliminary results of a pilot study

B. De Bari, M. Vallati, R. Gatta, C. Simeone, G. Girelli, U. Ricardi, I. Meattini, P. Gabriele, R. Bellavita, M. Krengli, I. Cafaro, E. Cagna, F. Bunkheila, S. Borghesi, M. Signor, A. Di Marco, F. Bertoni, M. Stefanacci, N. Pasinetti, M. BuglioneS. M. Magrini

Research output: Contribution to journalArticlepeer-review

Fingerprint

Dive into the research topics of 'Could machine learning improve the prediction of pelvic nodal status of prostate cancer patients? Preliminary results of a pilot study'. Together they form a unique fingerprint.

Keyphrases

Computer Science

Agricultural and Biological Sciences